Product Overview:
The ISG type pipeline centrifugal pump is designed by cleverly combining the performance parameters of the IS type single-stage single suction centrifugal pump on the basis of a general vertical pump. At the same time, suitable hot water, high-temperature corrosion-resistant chemical pumps, and oil pumps are derived from the ALG type based on different operating temperatures, media, etc. This series of products has the advantages of high efficiency, energy saving, low noise, and reliable performance, and meets the requirements of the latest national standard JB/T53058-93 of the Ministry of Machinery. The products are designed and manufactured according to the international ISO2858 standard.
Usage conditions:
The maximum working pressure of the ISG type pipeline centrifugal pump motor above 0.75KW pump system is 1.6Mpa, that is, the pump suction pressure+pump head is ≤ 1.6Mpa, the pump static pressure test pressure is 2.5Mpa, and the maximum working pressure of the pump system below 0.75KW is 0.8Mpa.
Please specify the system working pressure when placing an order. If the pump system working pressure is greater than 1.6Mpa, it should be separately stated during the order process, so that the overcurrent and connection parts of the pump can be made of cast steel during manufacturing.
The medium of ISG vertical pipeline centrifugal pump is cold and hot water or liquid with physical and chemical properties similar to water, and the medium temperature does not exceed 120 ℃.
characteristic:
1. The stainless steel pipeline pump is a vertical structure with the same inlet and outlet diameters and located on the same centerline. It can be installed in the pipeline like a valve, with a compact and beautiful appearance, small footprint, and low construction investment. If a protective cover is added, it can be used outdoors.
2. The impeller is directly installed on the long axis of the motor, with a short axial dimension and compact structure. The pump and motor bearings are reasonably configured, which can effectively balance the radial and axial loads generated by the pump operation, ensuring smooth operation, low vibration, and low noise of the pump.
3. The shaft seal adopts mechanical seal or a combination of mechanical seals, using imported titanium alloy sealing rings, medium-sized high-temperature resistant mechanical seals, and hard alloy materials for wear-resistant seals, which can effectively extend the service life of mechanical seals.
4. The installation and maintenance of pipeline centrifugal pumps are convenient, without the need to disassemble the pipeline system. All rotor components can be extracted by simply removing the pump coupling nut.
5. The series or parallel operation of pumps can be adopted according to the requirements of flow rate and head.
6. Vertical and horizontal installation of pumps can be adopted according to the requirements of pipeline layout.
characteristic:
Smooth operation: The absolute concentricity of the horizontal pipeline centrifugal pump shaft and the excellent dynamic and static balance of the impeller ensure smooth operation without vibration.
Drip proof: Hard alloy seals made of different materials ensure that there is no leakage during the transportation of different media.
Low noise: The water pump supported by two low-noise bearings runs smoothly, with almost no noise except for weak motor noise.
Low failure rate: The structural reinforcement is reasonable, and the key parts are matched with international first-class quality, greatly improving the fault free working time of the whole machine.
Easy maintenance: Replacing seals and bearings is simple and convenient.
More land saving: The exit can be arranged in three directions: left, right, and up, which is convenient for pipeline layout and installation, saving space.
matters needing attention:
1: Please specify the specific technical parameters, usage conditions, and characteristics of the medium used when placing an order, so that we can select the most suitable product for you.
2: After long-term operation of the pump, if the noise and vibration of the unit increase due to mechanical wear, it should be stopped for inspection and replaced if necessary
Damaged parts (mechanical seals and motor bearings), the overhaul period of the unit is generally 5000-8000 hours.
3: For long-term uninterrupted use of this pump, it is recommended to equip a backup water pump and use a control cabinet to switch it regularly to extend the service life of the water pump.
4: The oil pump is equipped with aluminum bronze impellers and explosion-proof motors as standard. If there are different material requirements, please specify separately.
5: This pump is strictly prohibited from operating in a low head state for a long time, otherwise it may cause the motor to overload and burn out.
This data is for reference only.
Corrosion resistance of main materials for water pumps (for reference)
medium | Concentration (%) | polypropylene | Concentration (%) | A B C | ||
25°C | 50°C | 20°C | 60°C | |||
sulfuric acid | 60 | √ | <30 | √ | Χ | |
nitric acid | 25 | √ | 20 | √ | Ο | |
hydrochloric acid | <36 | √ | <38 | √ | √ | |
hydrofluoric acid | 35 | √ | 40 | √ | Χ | |
acetic acid | <80 | √ | <20 | √ | Ο | |
sodium hydroxide | 100 | √ | √ | √ | ||
Potassium dichromate | 25 | √ | √ | √ | ||
sewage | Χ | Ο | Χ | |||
ethanol | √ | <50 | √ | √ | ||
acetone | √ | 10 | Ο | |||
Tetrachloroethane | Ο | Ο | Χ | |||
Freon 22 | √ | Ο | Ο | |||
bleaching solution | CL13% | √ | CL12.5% | Ο | Ο | |
Electroplating solution | √ | Ο | Χ | |||
Photographic liquid | √ | √ | √ |
medium | concentration (%) |
stainless steel | concentration (%) |
ceramics | ||
25°C | 50°C | 25°C | 50°C | |||
sulfuric acid | <5 | √ | Χ | △ | △ | |
nitric acid | 70 | △ | √ | △ | △ | |
hydrochloric acid | Χ | △ | △ | |||
hydrofluoric acid | Χ | 0~100 | Χ | |||
acetic acid | <20 | √ | √ | △ | △ | |
sodium hydroxide | 70 | √ | √ | Ο | Χ | |
Potassium dichromate | 40~60 | △ | △ | 10~20 | △ | △ |
sewage | Ο | △ | △ | |||
ethanol | △ | √ | △ | △ | ||
acetone | △ | △ | △ | |||
Tetrachloroethane | 50 | △ | △ | △ | △ | |
Freon 22 | △ | △ | △ | |||
bleaching solution | CL12% | Χ | △ | △ | ||
Electroplating solution | △ | △ | ||||
Photographic liquid | △ | △ | △ |
Note: △ is excellent; √ For good; Ο is usable, but has obvious corrosion; Severe corrosion, not applicable.
Physical and mechanical properties of PVDF
performance | unit | according to |
density | g/cm3 | 1.75-1.79 |
Ratio | cm3/g | 0.56-0.75 |
Melting point range | 0c | 155-170 |
Refractive index | n25D | 1.42 |
Mold Shrinkage | % | 2-3 |
Tensile strength (yield) | Mpa | 28-41 |
Stretching Strong Hair (Fracture) | Mpa | 31-52 |
Elongation (fracture) | % | 100-400 |
Impact strength (without gaps) | KJ/m | 107-214 |
compressive strength | Mpa | 55-69 |
Hardness (Shore D) | 70-80 | |
wear resistant | mg/1000r | 7.0-9.0 |
Ultimate Oxygen Index (l0 I) | % | 44 |
burning rate | V-D | |
resistivity | u194 | 1.0x10 15 |
Common dielectric numbers | 10 31 CYCles | 9.7 |
Chemical resistance properties of polyvinylidene fluoride (PVDF)
Chemical media | concentration (%) |
Maximum operating temperature ℃ | Chemical media | concentration (%) |
Maximum operating temperature ℃ | Chemical media | concentration (%) |
Maximum operating temperature ℃ |
hydrochloric acid | 36 | 135 | Hydrogen hydroxide | <10 | 85 | ethanol | 135 | |
sulfuric acid | <60 | 120 | Hydrogen hydroxide | 50 | 50 | ether | 50 | |
sulfuric acid | 80-93 | 95 | Ammonium carbonate oxide | 110 | formaldehyde | 37 | 50 | |
sulfuric acid | 90 | 65 | Calcium carbide oxide | 135 | acetone | 10% aqueous solution | 50 | |
nitric acid | <50 | 50 | Sodium Carbonate | aqueous solution | 135 | hydrazine | aqueous solution | 95 |
phosphoric acid | <85 | 135 | sodium bicarbonate | aqueous solution | 120 | benzene | 75 | |
phosphoric acid | 85 | 110 | ammonia | 110 | aniline | 50 | ||
acetic acid | 10 | 110 | salt water | 135 | toluene | 85 | ||
acetic acid | 80 | 80 | sodium hydrogen phosphate | aqueous solution | 120 | phenol | 50 | |
acetic acid | 100 | 50 | calcium phosphate | aqueous solution | 135 | Chlorobenzene | 135 | |
trichloroacetic acid | <10 | 95 | calcium oxide | aqueous solution | 135 | naphthalene | 95 | |
trichloroacetic acid | 50 | 50 | Potassium oxide | aqueous solution | 135 | Methyl Chloride | 135 | |
oxalic acid | 50 | Ammonium oxide | aqueous solution | 135 | chloroform | 50 | ||
Benzenesulfonic acid | aqueous solution | 50 | ferric chloride | aqueous solution | 135 | carbon tetrachloride | 135 | |
hydrofluoric acid | 40-100 | 95 | ferrous sulfate | aqueous solution | 135 | Ethyl Chloride | 135 | |
hydrofluoric acid | 40 | 120 | ammonium sulphate | aqueous solution | 135 | 1.2 Trichloroethane | 135 | |
Hydrobromic acid | 50 | 130 | ammonium sulphate | aqueous solution | 135 | 1.1.2 Trichloroethane | 65 | |
Peroxyacids | 10 | 95 | sodium nitrate | aqueous solution | 135 | Tetrachloroethane | 120 | |
Peroxyacids | 70 | 50 | ammonium phosphate | aqueous solution | 135 | vinyl chloride | 95 | |
NaClO | 6-15 | 95 | urea | aqueous solution | 120 | TRICHLOROETHYLENE | 135 | |
Potassium chlorate | 100 | carbon dioxide | 80 | dichloroethylene | 110 | |||
chromic acid | <40 | 80 | chlorine dioxide | 75 | natural gas | 135 | ||
chromic acid | 50 | 50 | chlorine dioxide | 65 | fuel oil | 135 | ||
Potassium permanganate | 120 | chlorine | element | 95 | paraffin oil | 120 | ||
hydrogen peroxide | <30 | 95 | bromine | element | 65 | |||
Sodium Peroxide | 95 | iodine | element | 65 |
Corrosion performance table of fluoroplastics (for reference only)
Temperature, ℃ | ||||||||
medium | Concentration% | 25 | 200 | medium | Concentration% | Temperature, 200 ℃ | ||
sulfuric acid | 0-100 | √ | √ | formic acid | √ | √ | √ | |
Oleum | √ | √ | Acetic acid (Acetic acid) | 0-Ice | √ | √ | √ | |
nitric acid | 0-100 | √ | √ | acetic acid | √ | √ | √ | |
Oleum | √ | √ | propionic acid | √ | √ | |||
hydrochloric acid | √ | √ | Acrylic acid | √ | ||||
phosphoric acid | √ | √ | Acrylic anhydride | √ | √ | √ (boiling point) | ||
hydrofluoric acid | √ | √ | methacrylic acid | √ | √ | √ (boiling point) | ||
Hydrobromic acid | √ | √ | butyrate | √ | √ | √ | ||
Hydroiodic acid | √ | √ | bitter | √ | √ | √ | ||
hydrocyanic acid | √ | √ | lauric acid | √ | √ | √ | ||
nitrous acid | √ | √ | palmitic acid | √ | √ | √ | ||
nitrous acid | √ | √ | stearic acid | √ | √ | √ | ||
chloric acid | √ | √ | oleic acid | √ | √ | √ | ||
hypochlorous acid | √ | √ | linoleic acid | √ | √ | √ | ||
perchloric acid | √ | √ | abietic acid | √ | √ | √ | ||
Tetraphosphate | √ | √ | fatty acid | √ | √ | |||
carbonic acid | √ | √ | chloroacetate | √ | √ | √ | ||
chromic acid | √ | √ | lactic acid | √ | √ | √ | ||
silicic acid | √ | √ | Oxalic acid (oxalic acid) | √ | √ | √ | ||
boric acid | √ | √ | fumaric acid | √ | √ | √ | ||
arsenic acid | √ | √ | citric acid | √ | √ | √ | ||
Selenate | √ | √ | nicotinic acid | √ | √ | √ | ||
Fluosilicic acid | √ | √ | ||||||
fluoboric acid | √ | √ | ||||||
Chlorosulfonic acid | √ | √ | ||||||
aqua regia | √ | √ | ||||||
mixed acid | √ | √ |
medium | Concentration% | Temperature, 200 ℃ |
sodium hydroxide | √ | |
potassium hydroxide | √ | |
ammonium hydroxide | √ | |
Magnesium hydroxide | √ | |
calcium hydroxide | √ | |
Aluminum hydroxide | √ | |
Barium hydroxide | √ | |
ferric hydroxide | √ | |
ferrous hydroxide | √ | |
nickel salt | √ | |
Nickel Sulfate | √ | |
Nickel nitrate | √ | |
Nickel chloride | √ | |
Zinc salt | √ | |
zinc sulfate | √ | |
zinc nitrate | √ | |
Zinc Chloride | √ |